YRC-Bench: A Benchmark for Learning to Coordinate with Experts
arXiv:2502.09583v3 Announce Type: replace-cross
Abstract: When deployed in the real world, AI agents will inevitably face challenges that exceed their individual capabilities. A critical component of AI safety is an agent’s ability to recognize when it is likely to fail in a novel situation and to yield control to a more capable expert system. Leveraging such expert assistance can significantly improve safety and performance in such situations. Since expert assistance is costly, a central challenge is determining when to consult an expert. In this paper, we explore a novel variant of this problem, termed YRC-0, in which an agent must learn to collaborate with an expert in new environments in an unsupervised manner–that is, without interacting with the expert during training. This setting motivates the development of low-cost, robust approaches for training expert-leveraging agents. To support research in this area, we introduce YRC-Bench, an open-source benchmark that instantiates YRC-0 across diverse environments. YRC-Bench provides a standardized Gym-like API, simulated experts, an evaluation pipeline, and implementations of popular baselines. Toward tackling YRC-0, we propose a validation strategy and use a proposer-validator decomposition as a diagnostic framework to evaluate a range of learning methods, offering insights that can inform future research. Codebase: https://github.com/modanesh/YRC-Bench