Wireless TokenCom: RL-Based Tokenizer Agreement for Multi-User Wireless Token Communications
arXiv:2602.12338v1 Announce Type: new
Abstract: Token Communications (TokenCom) has recently emerged as an effective new paradigm, where tokens are the unified units of multimodal communications and computations, enabling efficient digital semantic- and goal-oriented communications in future wireless networks. To establish a shared semantic latent space, the transmitters/receivers in TokenCom need to agree on an identical tokenizer model and codebook. To this end, an initial Tokenizer Agreement (TA) process is carried out in each communication episode, where the transmitter/receiver cooperate to choose from a set of pre-trained tokenizer models/ codebooks available to them both for efficient TokenCom. In this correspondence, we investigate TA in a multi-user downlink wireless TokenCom scenario, where the base station equipped with multiple antennas transmits video token streams to multiple users. We formulate the corresponding mixed-integer non-convex problem, and propose a hybrid reinforcement learning (RL) framework that integrates a deep Q-network (DQN) for joint tokenizer agreement and sub-channel assignment, with a deep deterministic policy gradient (DDPG) for beamforming. Simulation results show that the proposed framework outperforms baseline methods in terms of semantic quality and resource efficiency, while reducing the freezing events in video transmission by 68% compared to the conventional H.265-based scheme.