VQ-DSC-R: Robust Vector Quantized-Enabled Digital Semantic Communication With OFDM Transmission
arXiv:2602.15045v1 Announce Type: new
Abstract: Digital mapping of semantic features is essential for achieving interoperability between semantic communication and practical digital infrastructure. However, current research efforts predominantly concentrate on analog semantic communication with simplified channel models. To bridge these gaps, we develop a robust vector quantized-enabled digital semantic communication (VQ-DSC-R) system built upon orthogonal frequency division multiplexing (OFDM) transmission. Our work encompasses the framework design of VQ-DSC-R, followed by a comprehensive optimization study. Firstly, we design a Swin Transformer-based backbone for hierarchical semantic feature extraction, integrated with VQ modules that map the features into a shared semantic quantized codebook (SQC) for efficient index transmission. Secondly, we propose a differentiable vector quantization with adaptive noise-variance (ANDVQ) scheme to mitigate quantization errors in SQC, which dynamically adjusts the quantization process using K-nearest neighbor statistics, while exponential moving average mechanism stabilizes SQC training. Thirdly, for robust index transmission over multipath fading channel and noise, we develop a conditional diffusion model (CDM) to refine channel state information, and design an attention-based module to dynamically adapt to channel noise. The entire VQ-DSC-R system is optimized via a three-stage training strategy. Extensive experiments demonstrate superiority of VQ-DSC-R over benchmark schemes, achieving high compression ratios and robust performance in practical scenarios.