Variational Green’s Functions for Volumetric PDEs
arXiv:2602.12349v1 Announce Type: new
Abstract: Green’s functions characterize the fundamental solutions of partial differential equations; they are essential for tasks ranging from shape analysis to physical simulation, yet they remain computationally prohibitive to evaluate on arbitrary geometric discretizations. We present Variational Green’s Function (VGF), a method that learns a smooth, differentiable representation of the Green’s function for linear self-adjoint PDE operators, including the Poisson, the screened Poisson, and the biharmonic equations. To resolve the sharp singularities characteristic of the Green’s functions, our method decomposes the Green’s function into an analytic free-space component, and a learned corrector component. Our method leverages a variational foundation to impose Neumann boundary conditions naturally, and imposes Dirichlet boundary conditions via a projective layer on the output of the neural field. The resulting Green’s functions are fast to evaluate, differentiable with respect to source application, and can be conditioned on other signals parameterizing our geometry.