UAV-Enabled Short-Packet Communication via Fluid Antenna Systems
arXiv:2602.06206v1 Announce Type: new
Abstract: This paper develops a framework for analyzing UAV-enabled short-packet communication, leveraging fluid antenna system (FAS)-assisted relaying networks. Operating in the short-packet regime and focusing on challenging urban environments, we derive novel, closed-form expressions for the block error rate (BLER). This is achieved by modeling the spatially correlated Nakagami-$m$ fading link via a tractable eigenvalue-based approach. A high-signal-to-noise ratio (SNR) asymptotic analysis is also presented, revealing the system’s fundamental diversity order. Building on this analysis, we formulate a novel energy efficiency (EE) maximization problem that, unlike idealized models, uniquely incorporates the non-trivial time and energy overheads of FAS port selection. An efficient hierarchical algorithm is proposed to jointly optimize key system parameters. Numerical results validate our analysis, demonstrating that while FAS provides substantial power gains, the operational overhead creates a critical trade-off. This trade-off dictates an optimal number of FAS ports and a non-trivial optimal UAV deployment altitude, governed by the balance between blockage and path loss. This work provides key insights for FAS-aided UAV communications.