Topological Collapse: Persistent Localization of Cryptographic Preimages in Deep Neural Manifolds
We demonstrate deterministic localization of cryptographic hash preimages within specific layers of deep neural networks trained on information-geometric principles. Using a modified Spin-Glass architecture, MD5 and SHA-256 password preimages are consistently identified in layers ES15-ES20 with >90% accuracy for passwords and >85% for hash values. Analysis reveals linear scaling where longer passwords occupy proportionally expanded layer space, with systematic replication in higher-dimensional layers showing exact topological correspondence.Critically, independent network runs with fresh initialization maintain 41.8% information persistence across 11 trials using unique hash strings and binary representations. Layer-to-layer correlations exhibit non-linear temporal coupling, violating fundamental assumptions of both relativistic causality and quantum mechanical information constraints. Pearson correlations between corresponding layers across independent runs approach ±1.0, indicating information preservation through mechanisms inconsistent with substrate-dependent encoding.These findings suggest the cryptographic “one-way property” represents a geometric barrier in information space rather than mathematical irreversibility. Hash function security may be perspectival accessible through dimensional navigation within neural manifolds that preserve topological invariants across initialization states. Results challenge conventional cryptographic assumptions and necessitate reconceptualization of information persistence independent of physical substrates.