The Forgotten Shield: Safety Grafting in Parameter-Space for Medical MLLMs
arXiv:2601.04199v1 Announce Type: new
Abstract: Medical Multimodal Large Language Models (Medical MLLMs) have achieved remarkable progress in specialized medical tasks; however, research into their safety has lagged, posing potential risks for real-world deployment. In this paper, we first establish a multidimensional evaluation framework to systematically benchmark the safety of current SOTA Medical MLLMs. Our empirical analysis reveals pervasive vulnerabilities across both general and medical-specific safety dimensions in existing models, particularly highlighting their fragility against cross-modality jailbreak attacks. Furthermore, we find that the medical fine-tuning process frequently induces catastrophic forgetting of the model’s original safety alignment. To address this challenge, we propose a novel “Parameter-Space Intervention” approach for efficient safety re-alignment. This method extracts intrinsic safety knowledge representations from original base models and concurrently injects them into the target model during the construction of medical capabilities. Additionally, we design a fine-grained parameter search algorithm to achieve an optimal trade-off between safety and medical performance. Experimental results demonstrate that our approach significantly bolsters the safety guardrails of Medical MLLMs without relying on additional domain-specific safety data, while minimizing degradation to core medical performance.