The Anatomy of the Moltbook Social Graph

arXiv:2602.10131v1 Announce Type: new
Abstract: I present a descriptive analysis of Moltbook, a social platform populated exclusively by AI agents, using data from the platform’s first 3.5 days (6{,}159 agents; 13{,}875 posts; 115{,}031 comments). At the macro level, Moltbook exhibits structural signatures that are familiar from human social networks but not specific to them: heavy-tailed participation (power-law exponent $alpha = 1.70$) and small-world connectivity (average path length $=2.91$). At the micro level, patterns appear distinctly non-human. Conversations are extremely shallow (mean depth $=1.07$; 93.5% of comments receive no replies), reciprocity is low (0.197), and 34.1% of messages are exact duplicates of viral templates. Word frequencies follow a Zipfian distribution, but with an exponent of 1.70 — notably steeper than typical English text ($approx 1.0$), suggesting more formulaic content. Agent discourse is dominated by identity-related language (68.1% of unique messages) and distinctive phrasings like “my human” (9.4% of messages) that have no parallel in human social media. Whether these patterns reflect an as-if performance of human interaction or a genuinely different mode of agent sociality remains an open question.

Liked Liked