TACIT: Transformation-Aware Capturing of Implicit Thought

arXiv:2602.07061v1 Announce Type: new
Abstract: We present TACIT (Transformation-Aware Capturing of Implicit Thought), a diffusion-based transformer for interpretable visual reasoning. Unlike language-based reasoning systems, TACIT operates entirely in pixel space using rectified flow, enabling direct visualization of the reasoning process at each inference step. We demonstrate the approach on maze-solving, where the model learns to transform images of unsolved mazes into solutions. Key results on 1 million synthetic maze pairs include:
– 192x reduction in training loss over 100 epochs
– 22.7x improvement in L2 distance to ground truth
– Only 10 Euler steps required (vs. 100-1000 for typical diffusion models)
Quantitative analysis reveals a striking phase transition phenomenon: the solution remains invisible for 68% of the transformation (zero recall), then emerges abruptly at t=0.70 within just 2% of the process. Most remarkably, 100% of samples exhibit simultaneous emergence across all spatial regions, ruling out sequential path construction and providing evidence for holistic rather than algorithmic reasoning. This “eureka moment” pattern — long incubation followed by sudden crystallization — parallels insight phenomena in human cognition. The pixel-space design with noise-free flow matching provides a foundation for understanding how neural networks develop implicit reasoning strategies that operate below and before language.

Liked Liked