STDD:Spatio-Temporal Dynamics-Driven Token Refinement in Diffusion Language Models

arXiv:2601.04205v1 Announce Type: new
Abstract: Unlike autoregressive language models, diffusion language models (DLMs) generate text by iteratively denoising all token positions in parallel. At each timestep, the remasking strategy of a DLM selects low-priority tokens to defer their decoding, thereby improving both efficiency and output quality. However, mainstream remasking strategies rely on a single global confidence threshold, overlooking the temporal and spatial dynamics of individual tokens. Motivated by the redundant iterations and constrained parallelism introduced by fixed-threshold remasking, we propose a novel remasking approach that dynamically detects Temporal Variance and Spatial Deviance of each token, which reflect its convergence status and inter-token correlations. Using these signals, our method adaptively adjusts the confidence threshold for every token at every step. Empirical results show that our approach significantly improves the operational efficiency of DLMs across mainstream datasets, achieving speedups of up to 8.9 times while faithfully preserving generation quality.

Liked Liked