Spectral Diffusion Models on the Sphere

arXiv:2601.20498v1 Announce Type: cross
Abstract: Diffusion models provide a principled framework for generative modeling via stochastic differential equations and time-reversed dynamics. Extending spectral diffusion approaches to spherical data, however, raises nontrivial geometric and stochastic issues that are absent in the Euclidean setting.
In this work, we develop a diffusion modeling framework defined directly on finite-dimensional spherical harmonic representations of real-valued functions on the sphere. We show that the spherical discrete Fourier transform maps spatial Brownian motion to a constrained Gaussian process in the frequency domain with deterministic, generally non-isotropic covariance. This induces modified forward and reverse-time stochastic differential equations in the spectral domain.
As a consequence, spatial and spectral score matching objectives are no longer equivalent, even in the band-limited setting, and the frequency-domain formulation introduces a geometry-dependent inductive bias. We derive the corresponding diffusion equations and characterize the induced noise covariance.

Liked Liked