SoundBreak: A Systematic Study of Audio-Only Adversarial Attacks on Trimodal Models

arXiv:2601.16231v1 Announce Type: new
Abstract: Multimodal foundation models that integrate audio, vision, and language achieve strong performance on reasoning and generation tasks, yet their robustness to adversarial manipulation remains poorly understood. We study a realistic and underexplored threat model: untargeted, audio-only adversarial attacks on trimodal audio-video-language models. We analyze six complementary attack objectives that target different stages of multimodal processing, including audio encoder representations, cross-modal attention, hidden states, and output likelihoods. Across three state-of-the-art models and multiple benchmarks, we show that audio-only perturbations can induce severe multimodal failures, achieving up to 96% attack success rate. We further show that attacks can be successful at low perceptual distortions (LPIPS <= 0.08, SI-SNR >= 0) and benefit more from extended optimization than increased data scale. Transferability across models and encoders remains limited, while speech recognition systems such as Whisper primarily respond to perturbation magnitude, achieving >97% attack success under severe distortion. These results expose a previously overlooked single-modality attack surface in multimodal systems and motivate defenses that enforce cross-modal consistency.

Liked Liked