SiMiC: Context-Aware Silicon Microstructure Characterization Using Attention-Based Convolutional Neural Networks for Field-Emission Tip Analysis
arXiv:2601.17048v1 Announce Type: new
Abstract: Accurate characterization of silicon microstructures is essential for advancing microscale fabrication, quality control, and device performance. Traditional analysis using Scanning Electron Microscopy (SEM) often requires labor-intensive, manual evaluation of feature geometry, limiting throughput and reproducibility. In this study, we propose SiMiC: Context-Aware Silicon Microstructure Characterization Using Attention-Based Convolutional Neural Networks for Field-Emission Tip Analysis. By leveraging deep learning, our approach efficiently extracts morphological features-such as size, shape, and apex curvature-from SEM images, significantly reducing human intervention while improving measurement consistency. A specialized dataset of silicon-based field-emitter tips was developed, and a customized CNN architecture incorporating attention mechanisms was trained for multi-class microstructure classification and dimensional prediction. Comparative analysis with classical image processing techniques demonstrates that SiMiC achieves high accuracy while maintaining interpretability. The proposed framework establishes a foundation for data-driven microstructure analysis directly linked to field-emission performance, opening avenues for correlating emitter geometry with emission behavior and guiding the design of optimized cold-cathode and SEM electron sources. The related dataset and algorithm repository that could serve as a baseline in this area can be found at https://research.jingjietan.com/?q=SIMIC