SCALAR: Quantifying Structural Hallucination, Consistency, and Reasoning Gaps in Materials Foundation Models

arXiv:2601.22312v1 Announce Type: new
Abstract: Large language models are increasingly applied to materials science reasoning, yet their behavior under physically structured distribution shifts remains poorly understood. We introduce SCALAR (Structural Consistency And Logic Across Regimes), a benchmark for evaluating geometric scale generalization and its connection to structural hallucination, consistency, and reasoning in materials foundation models. Given canonical crystal representations, models must reason about derived nanoparticle structures obtained through supercell expansion and geometric truncation across length scales spanning a few atoms to over 18,000 atoms, totaling $approx$100,000 structures from DFT-validated unit cells. SCALAR defines three tasks. (i) CIF to property prediction. (ii) A Chain-of-Thought variant with explicit physics-grounded reasoning. (iii) Inverse retrieval identifying crystals from candidates given target properties. Outputs are evaluated via structured metrics capturing numeric error, hallucination, cross-prompt consistency, monotonic reasoning, output validity, and retrieval regret. Experiments across diverse foundation models reveal large, model-dependent shifts under explicit reasoning, often reducing hallucination and error, but frequently destabilizing consistency or validity. These results demonstrate that geometric scale generalization cannot be inferred from accuracy alone. Supplementary materials are available at https://github.com/KurbanIntelligenceLab/SCALAR.

Liked Liked