Scalable and Reliable Evaluation of AI Knowledge Retrieval Systems: RIKER and the Coherent Simulated Universe
arXiv:2601.08847v1 Announce Type: new
Abstract: Evaluating knowledge systems (LLMs, RAG, knowledge graphs, etc) faces fundamental challenges: static benchmarks are vulnerable to contamination, LLM-based judges exhibit systematic biases, and ground truth extraction requires expensive human annotation. We present RIKER (Retrieval Intelligence and Knowledge Extraction Rating), both a benchmark and a replicable methodology based on paradigm inversion – generating documents from known ground truth rather than extracting ground truth from documents. This approach enables deterministic scoring and scalable evaluation without human annotation or reference models, and contamination resistance through regenerable corpora. Our evaluation of 33 models using over 21 billion tokens reveals that context length claims frequently exceed usable capacity, with significant degradation beyond 32K tokens; cross-document aggregation proves substantially harder than single-document extraction; and grounding ability and hallucination resistance are distinct capabilities – models excelling at finding facts that exist may still fabricate facts that do not. Beyond the specific benchmark, we contribute a domain-agnostic methodology for constructing scalable and contamination-resistant evaluations wherever synthetic documents can be generated from structured ground truth.