Response-Based Knowledge Distillation for Multilingual Jailbreak Prevention Unwittingly Compromises Safety
arXiv:2602.11157v1 Announce Type: new
Abstract: Large language models (LLMs) are increasingly deployed worldwide, yet their safety alignment remains predominantly English-centric. This allows for vulnerabilities in non-English contexts, especially with low-resource languages. We introduce a novel application of knowledge distillation (KD) in the context of multilingual jailbreak prevention, examining its efficacy. We distill the refusal behaviors of a proprietary teacher model (OpenAI o1-mini) with Low-Rank Adaptation (LoRA) into three open-source student models: Meta-Llama-3-8B-Instruct, Gemma-2-2B-IT, and Qwen3-8B, using ~28,000 multilingual jailbreak prompts from XSafety via black-box response-based, parameter-efficient fine-tuning (PEFT). Evaluation on the MultiJail benchmark reveals a counterintuitive behavior: standard fine-tuning on the teacher’s “safe” refusal data inadvertently increases Jailbreak Success Rate (JSR) for all student models, up to 16.6 percentage points. Our experiments reveal a divergent generalization to unseen languages during distillation, with varying outcomes depending on the base model. By removing a primary source of safety degradation, nuanced `boundary’ refusals, we mitigate or even reverse safety declines in student models, although reductions in reasoning performance (GSM8K) persist. Overall, our exploratory study highlights the challenges and potential of KD as a technique for multilingual safety alignment, offering a foundation for future research in this direction.