Red-teaming the Multimodal Reasoning: Jailbreaking Vision-Language Models via Cross-modal Entanglement Attacks
arXiv:2602.10148v1 Announce Type: new
Abstract: Vision-Language Models (VLMs) with multimodal reasoning capabilities are high-value attack targets, given their potential for handling complex multimodal harmful tasks. Mainstream black-box jailbreak attacks on VLMs work by distributing malicious clues across modalities to disperse model attention and bypass safety alignment mechanisms. However, these adversarial attacks rely on simple and fixed image-text combinations that lack attack complexity scalability, limiting their effectiveness for red-teaming VLMs’ continuously evolving reasoning capabilities. We propose textbf{CrossTALK} (textbf{underline{Cross}}-modal entextbf{underline{TA}}ngtextbf{underline{L}}ement attactextbf{underline{K}}), which is a scalable approach that extends and entangles information clues across modalities to exceed VLMs’ trained and generalized safety alignment patterns for jailbreak. Specifically, {knowledge-scalable reframing} extends harmful tasks into multi-hop chain instructions, {cross-modal clue entangling} migrates visualizable entities into images to build multimodal reasoning links, and {cross-modal scenario nesting} uses multimodal contextual instructions to steer VLMs toward detailed harmful outputs. Experiments show our COMET achieves state-of-the-art attack success rate.