Organismal Agency and Rapid Adaptation: The Phenopoiesis Algorithm for Phenotype-First Evolution

arXiv:2602.00978v1 Announce Type: new
Abstract: Evolutionary success depends on the capacity to adapt: organisms must respond to environmental challenges through both genetic innovation and lifetime learning. The gene-centric paradigm attributes evolutionary causality exclusively to genes, while Denis Noble’s phenotype-first framework argues that organisms are active agents capable of interpreting genetic resources, learning from experience, and shaping their own development. However, this framework has remained philosophically intuitive but algorithmically opaque.
We show for the first time that organismal agency can be implemented as a concrete computational process through heritable phenotypic patterns. We introduce the Phenopoiesis Algorithm, where organisms inherit not just genes but also successful phenotypic patterns discovered during lifetime learning. Through experiments in changing environments, these pattern-inheriting organisms achieve 3.4 times faster adaptation compared to gene-centric models. Critically, these gains require cross-generational inheritance of learned patterns rather than within-lifetime learning alone.
We conclude that organismal agency is not a philosophical abstraction but an algorithmic mechanism with measurable adaptive value. The mechanism works through compositional reuse: organisms discover how to compose primitive elements into solutions, encode those compositional recipes, and transmit them to offspring. Evolution operates across multiple timescales — fast, reversible phenotypic inheritance and slow, permanent genetic inheritance — providing adaptive flexibility that single-channel mechanisms cannot achieve.

Liked Liked