Optimizing What We Trust: Reliability-Guided QUBO Selection of Multi-Agent Weak Framing Signals for Arabic Sentiment Prediction

Framing detection in Arabic social media is difficult due to interpretive ambiguity, cultural grounding, and limited reliable supervision. Existing LLM-based weak supervision methods typically rely on label aggregation, which is brittle when annotations are few and socially dependent. We propose a reliability-aware weak supervision framework that shifts the focus from label fusion to data curation. A small multi-agent LLM pipeline—two framers, a critic, and a discriminator—treats disagreement and reasoning quality as epistemic signals and produces instance-level reliability estimates. These estimates guide a QUBO-based subset selection procedure that enforces frame balance while reducing redundancy. Intrinsic diagnostics and an out-of-domain Arabic sentiment transfer test show that the selected subsets are more reliable and encode non-random, transferable structure, without degrading strong text-only baselines.

Liked Liked