One Global Model, Many Behaviors: Stockout-Aware Feature Engineering and Dynamic Scaling for Multi-Horizon Retail Demand Forecasting with a Cost-Aware Ordering Policy (VN2 Winner Report)
arXiv:2601.18919v1 Announce Type: new
Abstract: Inventory planning for retail chains requires translating demand forecasts into ordering decisions, including asymmetric shortages and holding costs. The VN2 Inventory Planning Challenge formalizes this setting as a weekly decision-making cycle with a two-week product delivery lead time, where the total cost is defined as the shortage cost plus the holding cost. This report presents the winning VN2 solution: a two-stage predict-then-optimize pipeline that combines a single global multi-horizon forecasting model with a cost-aware ordering policy. The forecasting model is trained in a global paradigm, jointly using all available time series. A gradient-boosted decision tree (GBDT) model implemented in CatBoost is used as the base learner. The model incorporates stockout-aware feature engineering to address censored demand during out-of-stock periods, per-series scaling to focus learning on time-series patterns rather than absolute levels, and time-based observation weights to reflect shifts in demand patterns. In the decision stage, inventory is projected to the start of the delivery week, and a target stock level is calculated that explicitly trades off shortage and holding costs. Evaluated by the official competition simulation in six rounds, the solution achieved first place by combining a strong global forecasting model with a lightweight cost-aware policy. Although developed for the VN2 setting, the proposed approach can be extended to real-world applications and additional operational constraints.