On the Entropy Calibration of Language Models

arXiv:2511.11966v2 Announce Type: replace-cross
Abstract: We study the problem of entropy calibration, which asks whether a language model’s entropy over generations matches its log loss on human text. Past work found that models are miscalibrated, with entropy per step increasing as generations grow longer, due to error accumulation. To calibrate the model and improve text quality, it has become standard practice to truncate the distribution, but this approach reduces output diversity, which we would like to avoid. Therefore, in this paper, we ask: does miscalibration improve automatically with scale, and if not, is it theoretically possible to calibrate without tradeoffs? To build intuition, we first study a simplified theoretical setting to characterize the scaling behavior of miscalibration with respect to dataset size. We find that the rate of scaling depends on the power law exponent of the data distribution — in particular, for a power law exponent close to 1, the scaling exponent is close to 0, meaning that miscalibration improves very slowly with scale. Next, we measure miscalibration empirically in language models ranging from 0.5B to 70B parameters. We find that the observed scaling behavior is similar to what is predicted theoretically: our fitted scaling exponents for text are close to 0, meaning that larger models accumulate error at a similar rate as smaller ones. This scaling (or, lack thereof) provides one explanation for why we sample from larger models with similar amounts of truncation as smaller models, even though the larger models are of higher quality. However, truncation is not a satisfying solution because it comes at the cost of increased log loss. In theory, is it even possible to reduce entropy while preserving log loss? We prove that it is possible, if we assume access to a black box which can fit models to predict the future entropy of text.

Liked Liked