Next-Generation Reservoir Computing for Dynamical Inference
arXiv:2509.11338v3 Announce Type: replace
Abstract: We present a simple and scalable implementation of next-generation reservoir computing (NGRC) for modeling dynamical systems from time-series data. The method uses a pseudorandom nonlinear projection of time-delay embedded inputs, allowing the feature-space dimension to be chosen independently of the observation size and offering a flexible alternative to polynomial-based NGRC projections. We demonstrate the approach on benchmark tasks, including attractor reconstruction and bifurcation diagram estimation, using partial and noisy measurements. We further show that small amounts of measurement noise during training act as an effective regularizer, improving long-term autonomous stability compared to standard regression alone. Across all tests, the models remain stable over long rollouts and generalize beyond the training data. The framework offers explicit control of system state during prediction, and these properties make NGRC a natural candidate for applications such as surrogate modeling and digital-twin applications.