Next Generation Intelligent Low-Altitude Economy Deployments: The O-RAN Perspective
arXiv:2601.00257v1 Announce Type: new
Abstract: Despite the growing interest in low-altitude economy (LAE) applications, including UAV-based logistics and emergency response, fundamental challenges remain in orchestrating such missions over complex, signal-constrained environments. These include the absence of real-time, resilient, and context-aware orchestration of aerial nodes with limited integration of artificial intelligence (AI) specialized for LAE missions. This paper introduces an open radio access network (O-RAN)-enabled LAE framework that leverages seamless coordination between the disaggregated RAN architecture, open interfaces, and RAN intelligent controllers (RICs) to facilitate closed-loop, AI-optimized, and mission-critical LAE operations. We evaluate the feasibility and performance of the proposed architecture via a semantic-aware rApp that acts as a terrain interpreter, offering semantic guidance to a reinforcement learning-enabled xApp, which performs real-time trajectory planning for LAE swarm nodes. We survey the capabilities of UAV testbeds that can be leveraged for LAE research, and present critical research challenges and standardization needs.