Next Generation Intelligent Low-Altitude Economy Deployments: The O-RAN Perspective

arXiv:2601.00257v1 Announce Type: new
Abstract: Despite the growing interest in low-altitude economy (LAE) applications, including UAV-based logistics and emergency response, fundamental challenges remain in orchestrating such missions over complex, signal-constrained environments. These include the absence of real-time, resilient, and context-aware orchestration of aerial nodes with limited integration of artificial intelligence (AI) specialized for LAE missions. This paper introduces an open radio access network (O-RAN)-enabled LAE framework that leverages seamless coordination between the disaggregated RAN architecture, open interfaces, and RAN intelligent controllers (RICs) to facilitate closed-loop, AI-optimized, and mission-critical LAE operations. We evaluate the feasibility and performance of the proposed architecture via a semantic-aware rApp that acts as a terrain interpreter, offering semantic guidance to a reinforcement learning-enabled xApp, which performs real-time trajectory planning for LAE swarm nodes. We survey the capabilities of UAV testbeds that can be leveraged for LAE research, and present critical research challenges and standardization needs.

Liked Liked