Missing At Random as Covariate Shift: Correcting Bias in Iterative Imputation

arXiv:2602.06713v1 Announce Type: new
Abstract: Accurate imputation of missing data is critical to downstream machine learning performance. We formulate missing data imputation as a risk minimisation problem, which highlights a covariate shift between the observed and unobserved data distributions. This covariate shift induced bias is not accounted for by popular imputation methods and leads to suboptimal performance. In this paper, we derive theoretically valid importance weights that correct for the induced distributional bias. Furthermore, we propose a novel imputation algorithm that jointly estimates both the importance weights and imputation models, enabling bias correction throughout the imputation process. Empirical results across benchmark datasets show reductions in root mean squared error and Wasserstein distance of up to 7% and 20%, respectively, compared to otherwise identical unweighted methods.

Liked Liked