MDE-VIO: Enhancing Visual-Inertial Odometry Using Learned Depth Priors

arXiv:2602.11323v1 Announce Type: new
Abstract: Traditional monocular Visual-Inertial Odometry (VIO) systems struggle in low-texture environments where sparse visual features are insufficient for accurate pose estimation. To address this, dense Monocular Depth Estimation (MDE) has been widely explored as a complementary information source. While recent Vision Transformer (ViT) based complex foundational models offer dense, geometrically consistent depth, their computational demands typically preclude them from real-time edge deployment. Our work bridges this gap by integrating learned depth priors directly into the VINS-Mono optimization backend. We propose a novel framework that enforces affine-invariant depth consistency and pairwise ordinal constraints, explicitly filtering unstable artifacts via variance-based gating. This approach strictly adheres to the computational limits of edge devices while robustly recovering metric scale. Extensive experiments on the TartanGround and M3ED datasets demonstrate that our method prevents divergence in challenging scenarios and delivers significant accuracy gains, reducing Absolute Trajectory Error (ATE) by up to 28.3%. Code will be made available.

Liked Liked