Low-Dimensional Execution Manifolds in Transformer Learning Dynamics: Evidence from Modular Arithmetic Tasks

We investigate the geometric structure of learning dynamics in overparameterized transformer models through carefully controlled modular arithmetic tasks. Our primary finding is that despite operating in high-dimensional parameter spaces ($d=128$), transformer training trajectories rapidly collapse onto low-dimensional execution manifolds of dimension $3$–$4$. This dimensional collapse is robust across random seeds and moderate task difficulties, though the orientation of the manifold in parameter space varies between runs. We demonstrate that this geometric structure underlies several empirically observed phenomena: (1) sharp attention concentration emerges as saturation along routing coordinates within the execution manifold, (2) SGD commutators are preferentially aligned with the execution subspace (up to $10times$ random baseline) early in training, with $>92%$ of non-commutativity confined to orthogonal staging directions and this alignment decreasing as training converges, and (3) sparse autoencoders capture auxiliary routing structure but fail to isolate execution itself, which remains distributed across the low-dimensional manifold. Our results suggest a unifying geometric framework for understanding transformer learning, where the vast majority of parameters serve to absorb optimization interference while core computation occurs in a dramatically reduced subspace. These findings have implications for interpretability, training curriculum design, and understanding the role of overparameterization in neural network learning.

Liked Liked