Limits of Residual-Based Detection for Physically Consistent False Data Injection
arXiv:2602.10162v1 Announce Type: new
Abstract: False data injection attacks (FDIAs) pose a persistent challenge to AC power system state estimation. In current practice, detection relies primarily on topology-aware residual-based tests that assume malicious measurements can be distinguished from normal operation through physical inconsistency reflected in abnormal residual behavior. This paper shows that this assumption does not always hold: when FDIA scenarios produce manipulated measurements that remain on the measurement manifold induced by AC power flow relations and measurement redundancy, residual-based detectors may fail to distinguish them from nominal data. The resulting detectability limitation is a property of the measurement manifold itself and does not depend on the attacker’s detailed knowledge of the physical system model. To make this limitation observable in practice, we present a data-driven constructive mechanism that incorporates the generic functional structure of AC power flow to generate physically consistent, manifold-constrained perturbations, providing a concrete witness of how residual-based detectors can be bypassed. Numerical studies on multiple AC test systems characterize the conditions under which detection becomes challenging and illustrate its failure modes. The results highlight fundamental limits of residual-based detection in AC state estimation and motivate the need for complementary defenses beyond measurement consistency tests.