Learning About Learning: A Physics Path from Spin Glasses to Artificial Intelligence
The Hopfield model, originally inspired by spin-glass physics, occupies a central place at the intersection of statistical mechanics, neural networks, and modern artificial intelligence. Despite its conceptual simplicity and broad applicability — from associative memory to near-optimal solutions of combinatorial optimization problems — it is rarely integrated into standard undergraduate physics curricula. In this paper, we present the Hopfield model as a pedagogically rich framework that naturally unifies core topics from undergraduate statistical physics, dynamical systems, linear algebra, and computational methods. We provide a concise and illustrated theoretical introduction grounded in familiar physics concepts, analyze the model’s energy function, dynamics, and pattern stability, and discuss practical aspects of simulation, including a freely available simulation code. To support instruction, we conclude with classroom-ready example problems designed to mirror research practice. By explicitly connecting fundamental physics to contemporary AI applications, this work aims to help prepare physics students to understand, apply, and critically engage with the computational tools increasingly central to research, industry, and society.