Laplacian Representations for Decision-Time Planning
arXiv:2602.05031v1 Announce Type: new
Abstract: Planning with a learned model remains a key challenge in model-based reinforcement learning (RL). In decision-time planning, state representations are critical as they must support local cost computation while preserving long-horizon structure. In this paper, we show that the Laplacian representation provides an effective latent space for planning by capturing state-space distances at multiple time scales. This representation preserves meaningful distances and naturally decomposes long-horizon problems into subgoals, also mitigating the compounding errors that arise over long prediction horizons. Building on these properties, we introduce ALPS, a hierarchical planning algorithm, and demonstrate that it outperforms commonly used baselines on a selection of offline goal-conditioned RL tasks from OGBench, a benchmark previously dominated by model-free methods.