Gaussian surrogates do well on Poisson inverse problems

arXiv:2602.17274v1 Announce Type: cross
Abstract: In imaging inverse problems with Poisson-distributed measurements, it is common to use objectives derived from the Poisson likelihood. But performance is often evaluated by mean squared error (MSE), which raises a practical question: how much does a Poisson objective matter for MSE, even at low dose? We analyze the MSE of Poisson and Gaussian surrogate reconstruction objectives under Poisson noise. In a stylized diagonal model, we show that the unregularized Poisson maximum-likelihood estimator can incur large MSE at low dose, while Poisson MAP mitigates this instability through regularization. We then study two Gaussian surrogate objectives: a heteroscedastic quadratic objective motivated by the normal approximation of Poisson data, and a homoscedastic quadratic objective that yields a simple linear estimator. We show that both surrogates can achieve MSE comparable to Poisson MAP in the low-dose regime, despite departing from the Poisson likelihood. Numerical computed tomography experiments indicate that these conclusions extend beyond the stylized setting of our theoretical analysis.

Liked Liked