Exploring Semantic Labeling Strategies for Third-Party Cybersecurity Risk Assessment Questionnaires
arXiv:2602.10149v1 Announce Type: new
Abstract: Third-Party Risk Assessment (TPRA) is a core cybersecurity practice for evaluating suppliers against standards such as ISO/IEC 27001 and NIST. TPRA questionnaires are typically drawn from large repositories of security and compliance questions, yet tailoring assessments to organizational needs remains a largely manual process. Existing retrieval approaches rely on keyword or surface-level similarity, which often fails to capture implicit assessment scope and control semantics.
This paper explores strategies for organizing and retrieving TPRA cybersecurity questions using semantic labels that describe both control domains and assessment scope. We compare direct question-level labeling with a Large Language Model (LLM) against a hybrid semi-supervised semantic labeling (SSSL) pipeline that clusters questions in embedding space, labels a small representative subset using an LLM, and propagates labels to remaining questions using k-Nearest Neighbors; we also compare downstream retrieval based on direct question similarity versus retrieval in the label space. We find that semantic labels can improve retrieval alignment when labels are discriminative and consistent, and that SSSL can generalize labels from a small labeled subset to large repositories while substantially reducing LLM usage and cost.