Exploring Emerging Norms of AI Disclosure in Programming Education
arXiv:2602.04023v1 Announce Type: new
Abstract: Generative AI blurs the lines of authorship in computing education, creating uncertainty around how students should attribute AI assistance. To examine these emerging norms, we conducted a factorial vignette study with 94 computer science students across 102 unique scenarios, systematically manipulating assessment type, AI autonomy, student activity, prior knowledge, and human refinement effort. This paper details how these factors influence students’ perceptions of ownership and disclosure preferences. Our findings indicate that attribution judgments are primarily driven by different levels of AI assistance and human refinement. We also found that students’ perception of authorship significantly predicts their policy expectations. We conclude by proposing a shift from statement-style policies to process-oriented attribution, transforming disclosure into a pedagogical mechanism for fostering critical engagement with AI-generated content.