Exactly Computing do-Shapley Values

arXiv:2602.07203v1 Announce Type: new
Abstract: Structural Causal Models (SCM) are a powerful framework for describing complicated dynamics across the natural sciences. A particularly elegant way of interpreting SCMs is do-Shapley, a game-theoretic method of quantifying the average effect of $d$ variables across exponentially many interventions. Like Shapley values, computing do-Shapley values generally requires evaluating exponentially many terms. The foundation of our work is a reformulation of do-Shapley values in terms of the irreducible sets of the underlying SCM. Leveraging this insight, we can exactly compute do-Shapley values in time linear in the number of irreducible sets $r$, which itself can range from $d$ to $2^d$ depending on the graph structure of the SCM. Since $r$ is unknown a priori, we complement the exact algorithm with an estimator that, like general Shapley value estimators, can be run with any query budget. As the query budget approaches $r$, our estimators can produce more accurate estimates than prior methods by several orders of magnitude, and, when the budget reaches $r$, return the Shapley values up to machine precision. Beyond computational speed, we also reduce the identification burden: we prove that non-parametric identifiability of do-Shapley values requires only the identification of interventional effects for the $d$ singleton coalitions, rather than all classes.

Liked Liked