Equipping LLM with Directional Multi-Talker Speech Understanding Capabilities

arXiv:2602.07211v1 Announce Type: new
Abstract: Recent studies have demonstrated that prompting large language models (LLM) with audio encodings enables effective speech understanding capabilities. However, most speech LLMs are trained on single-channel, single-talker data, which makes it challenging to directly apply them to multi-talker and multi-channel speech understanding task. In this work, we present a comprehensive investigation on how to enable directional multi-talker speech understanding capabilities for LLMs, specifically in smart glasses usecase. We propose two novel approaches to integrate directivity into LLMs: (1) a cascaded system that leverages a source separation front-end module, and (2) an end-to-end system that utilizes serialized output training. All of the approaches utilize a multi-microphone array embedded in smart glasses to optimize directivity interpretation and processing in a streaming manner. Experimental results demonstrate the efficacy of our proposed methods in endowing LLMs with directional speech understanding capabilities, achieving strong performance in both speech recognition and speech translation tasks.

Liked Liked