Enhancing SDG-Text Classification with Combinatorial Fusion Analysis and Generative AI
arXiv:2602.11168v1 Announce Type: new
Abstract: (Natural Language Processing) NLP techniques such as text classification and topic discovery are very useful in many application areas including information retrieval, knowledge discovery, policy formulation, and decision-making. However, it remains a challenging problem in cases where the categories are unavailable, difficult to differentiate, or are interrelated. Social analysis with human context is an area that can benefit from text classification, as it relies substantially on text data. The focus of this paper is to enhance the classification of text according to the UN’s Sustainable Development Goals (SDGs) by collecting and combining intelligence from multiple models. Combinatorial Fusion Analysis (CFA), a system fusion paradigm using a rank-score characteristic (RSC) function and cognitive diversity (CD), has been used to enhance classifier methods by combining a set of relatively good and mutually diverse classification models. We use a generative AI model to generate synthetic data for model training and then apply CFA to this classification task. The CFA technique achieves 96.73% performance, outperforming the best individual model. We compare the outcomes with those obtained from human domain experts. It is demonstrated that combining intelligence from multiple ML/AI models using CFA and getting input from human experts can, not only complement, but also enhance each other.