Engineering the RAG Stack: A Comprehensive Review of the Architecture and Trust Frameworks for Retrieval-Augmented Generation Systems
arXiv:2601.05264v1 Announce Type: new
Abstract: This article provides a comprehensive systematic literature review of academic studies, industrial applications, and real-world deployments from 2018 to 2025, providing a practical guide and detailed overview of modern Retrieval-Augmented Generation (RAG) architectures. RAG offers a modular approach for integrating external knowledge without increasing the capacity of the model as LLM systems expand. Research and engineering practices have been fragmented as a result of the increasing diversity of RAG methodologies, which encompasses a variety of fusion mechanisms, retrieval strategies, and orchestration approaches. We provide quantitative assessment frameworks, analyze the implications for trust and alignment, and systematically consolidate existing RAG techniques into a unified taxonomy. This document is a practical framework for the deployment of resilient, secure, and domain-adaptable RAG systems, synthesizing insights from academic literature, industry reports, and technical implementation guides. It also functions as a technical reference.