Efficient Distance Pruning for Process Suffix Comparison in Prescriptive Process Monitoring
arXiv:2602.09039v1 Announce Type: new
Abstract: Prescriptive process monitoring seeks to recommend actions that improve process outcomes by analyzing possible continuations of ongoing cases. A key obstacle is the heavy computational cost of large-scale suffix comparisons, which grows rapidly with log size. We propose an efficient retrieval method exploiting the triangle inequality: distances to a set of optimized pivots define bounds that prune redundant comparisons. This substantially reduces runtime and is fully parallelizable. Crucially, pruning is exact: the retrieved suffixes are identical to those from exhaustive comparison, thereby preserving accuracy. These results show that metric-based pruning can accelerate suffix comparison and support scalable prescriptive systems.