Early Wildfire Smoke Detection with a Multi-Resolution Framework and Two-Stage Classification Pipeline

Early wildfire smoke detection is critical for preventing small ignitions from escalating into large-scale fires, yet early-stage smoke plumes are often faint, low-contrast, and spatially small. When full-resolution frames are resized to satisfy fixed-input detector architectures and enable efficient batched GPU inference, these subtle cues are further diminished, leading to missed detections and unreliable scores near deployment thresholds. Existing remedies such as multi-scale inference, slicing/tiling, or super-resolution could improve sensitivity, but typically incur substantial overhead from multiple forward passes or added network components, limiting real-time use on resource-constrained platforms. To mitigate these challenges, we propose a composite multi-resolution detection framework that improves sensitivity to small smoke regions while maintaining single-pass inference. Motivated by the fact that most operational wildfire monitoring systems rely on UAV platforms and mountain-top CCTV surveillance, their wide-field imagery typically contains a large sky region above the horizon where early smoke is most likely to first become visible. Accordingly, crop placement is guided by a skyline prior that prioritizes this high-probability sky band while retaining the remaining scene for global context. A dynamic compositing stage stacks a global view with a high-resolution, sky-aligned band into a standard square detector input, preserving context with minimal added cost. Detections from the two views are reconciled via coordinate restoration and non-maximum suppression. For deployment, a lightweight second-stage classifier selectively re-evaluates low-confidence detections to stabilize decisions near a fixed operating threshold without retraining the detector. Across Early Smoke and Pyro-SDIS, the method improves AP@0.5 by +0.060/+0.036 and APsmall by +0.151/+0.025, respectively, with accuracy-efficiency trade-offs supported by ablation studies and deployment-time latency analysis.

Liked Liked