Diverging Flows: Detecting Extrapolations in Conditional Generation
arXiv:2602.13061v1 Announce Type: cross
Abstract: The ability of Flow Matching (FM) to model complex conditional distributions has established it as the state-of-the-art for prediction tasks (e.g., robotics, weather forecasting). However, deployment in safety-critical settings is hindered by a critical extrapolation hazard: driven by smoothness biases, flow models yield plausible outputs even for off-manifold conditions, resulting in silent failures indistinguishable from valid predictions. In this work, we introduce Diverging Flows, a novel approach that enables a single model to simultaneously perform conditional generation and native extrapolation detection by structurally enforcing inefficient transport for off-manifold inputs. We evaluate our method on synthetic manifolds, cross-domain style transfer, and weather temperature forecasting, demonstrating that it achieves effective detection of extrapolations without compromising predictive fidelity or inference latency. These results establish Diverging Flows as a robust solution for trustworthy flow models, paving the way for reliable deployment in domains such as medicine, robotics, and climate science.