Development of a high-resolution indoor radon map using a new machine learning-based probabilistic model and German radon survey data

arXiv:2310.11143v5 Announce Type: replace
Abstract: Accurate knowledge of indoor radon concentration is crucial for assessing radon-related health effects or identifying radon-prone areas. Indoor radon concentration at the national scale is usually estimated on the basis of extensive measurement campaigns. However, characteristics of the sampled households often differ from the characteristics of the target population owing to the large number of relevant factors that control the indoor radon concentration, such as the availability of geogenic radon or floor level. We propose a model-based approach that allows a more realistic estimation of indoor radon distribution with a higher spatial resolution than a purely data-based approach. A modeling approach was used by applying a quantile regression forest to estimate the probability distribution function of indoor radon for each floor level of each residential building in Germany. Based on the estimated probability distribution function,a probabilistic Monte Carlo sampling technique was applied, enabling the combination and population weighting of floor-level predictions. In this way,the uncertainty of the individual predictions is effectively propagated into the estimate of variability at the aggregated level. The results show an approximate lognormal distribution of indoor radon in dwellings in Germany with an arithmetic mean of 63 Bq/m3, a geometric mean of 41 Bq/m3, and a 95th percentile of 180 Bq/m3. The exceedance probabilities for 100 and 300 Bq/m3 are 12.5% (10.5 million people affected) and 2.2 % (1.9 million people affected), respectively. The advantages of our approach are that it yields a) an accurate estimation of indoor radon concentration even if the survey is not fully representative with respect to floor level and radon concentration in soil, and b) an estimate of the indoor radon distribution with a much higher spatial resolution than basic descriptive statistics.

Liked Liked