Decoding Future Risk: Deep Learning Analysis of Tubular Adenoma Whole-Slide Images
arXiv:2602.09155v1 Announce Type: new
Abstract: Colorectal cancer (CRC) remains a significant cause of cancer-related mortality, despite the widespread implementation of prophylactic initiatives aimed at detecting and removing precancerous polyps. Although screening effectively reduces incidence, a notable portion of patients initially diagnosed with low-grade adenomatous polyps will still develop CRC later in life, even without the presence of known high-risk syndromes. Identifying which low-risk patients are at higher risk of progression is a critical unmet need for tailored surveillance and preventative therapeutic strategies. Traditional histological assessment of adenomas, while fundamental, may not fully capture subtle architectural or cytological features indicative of malignant potential. Advancements in digital pathology and machine learning provide an opportunity to analyze whole-slide images (WSIs) comprehensively and objectively. This study investigates whether machine learning algorithms, specifically convolutional neural networks (CNNs), can detect subtle histological features in WSIs of low-grade tubular adenomas that are predictive of a patient’s long-term risk of developing colorectal cancer.