CP Loss: Channel-wise Perceptual Loss for Time Series Forecasting
arXiv:2601.18829v1 Announce Type: new
Abstract: Multi-channel time-series data, prevalent across diverse applications, is characterized by significant heterogeneity in its different channels. However, existing forecasting models are typically guided by channel-agnostic loss functions like MSE, which apply a uniform metric across all channels. This often leads to fail to capture channel-specific dynamics such as sharp fluctuations or trend shifts. To address this, we propose a Channel-wise Perceptual Loss (CP Loss). Its core idea is to learn a unique perceptual space for each channel that is adapted to its characteristics, and to compute the loss within this space. Specifically, we first design a learnable channel-wise filter that decomposes the raw signal into disentangled multi-scale representations, which form the basis of our perceptual space. Crucially, the filter is optimized jointly with the main forecasting model, ensuring that the learned perceptual space is explicitly oriented towards the prediction task. Finally, losses are calculated within these perception spaces to optimize the model. Code is available at https://github.com/zyh16143998882/CP_Loss.