Constrained Density Estimation via Optimal Transport

arXiv:2601.06830v1 Announce Type: new
Abstract: A novel framework for density estimation under expectation constraints is proposed. The framework minimizes the Wasserstein distance between the estimated density and a prior, subject to the constraints that the expected value of a set of functions adopts or exceeds given values. The framework is generalized to include regularization inequalities to mitigate the artifacts in the target measure. An annealing-like algorithm is developed to address non-smooth constraints, with its effectiveness demonstrated through both synthetic and proof-of-concept real world examples in finance.

Liked Liked