Can We Trust LLM Detectors?

arXiv:2601.15301v1 Announce Type: new
Abstract: The rapid adoption of LLMs has increased the need for reliable AI text detection, yet existing detectors often fail outside controlled benchmarks. We systematically evaluate 2 dominant paradigms (training-free and supervised) and show that both are brittle under distribution shift, unseen generators, and simple stylistic perturbations. To address these limitations, we propose a supervised contrastive learning (SCL) framework that learns discriminative style embeddings. Experiments show that while supervised detectors excel in-domain, they degrade sharply out-of-domain, and training-free methods remain highly sensitive to proxy choice. Overall, our results expose fundamental challenges in building domain-agnostic detectors. Our code is available at: https://github.com/HARSHITJAIS14/DetectAI

Liked Liked