CageDroneRF: A Large-Scale RF Benchmark and Toolkit for Drone Perception
arXiv:2601.03302v1 Announce Type: new
Abstract: We present CageDroneRF (CDRF), a large-scale benchmark for Radio-Frequency (RF) drone detection and identification built from real-world captures and systematically generated synthetic variants. CDRF addresses the scarcity and limited diversity of existing RF datasets by coupling extensive raw recordings with a principled augmentation pipeline that (i) precisely controls Signal-to-Noise Ratio (SNR), (ii) injects interfering emitters, and (iii) applies frequency shifts with label-consistent bounding-box transformations for detection. This dataset spans a wide range of contemporary drone models, many unavailable in current public datasets, and acquisition conditions, derived from data collected at the Rowan University campus and within a controlled RF-cage facility. CDRF is released with interoperable open-source tools for data generation, preprocessing, augmentation, and evaluation that also operate on existing public benchmarks. CDRF enables standardized benchmarking for classification, open-set recognition, and object detection, supporting rigorous comparisons and reproducible pipelines. By releasing this comprehensive benchmark and tooling, CDRF aims to accelerate progress toward robust, generalizable RF perception models.