Bilateral Distribution Compression: Reducing Both Data Size and Dimensionality

arXiv:2509.17543v5 Announce Type: replace
Abstract: Existing distribution compression methods reduce the number of observations in a dataset by minimising the Maximum Mean Discrepancy (MMD) between original and compressed sets, but modern datasets are often large in both sample size and dimensionality. We propose Bilateral Distribution Compression (BDC), a two-stage framework that compresses along both axes while preserving the underlying distribution, with overall linear time and memory complexity in dataset size and dimension. Central to BDC is the Decoded MMD (DMMD), which we introduce to quantify the discrepancy between the original data and a compressed set decoded from a low-dimensional latent space. BDC proceeds by (i) learning a low-dimensional projection using the Reconstruction MMD (RMMD), and (ii) optimising a latent compressed set with the Encoded MMD (EMMD). We show that this procedure minimises the DMMD, guaranteeing that the compressed set faithfully represents the original distribution. Experiments show that BDC can achieve comparable or superior downstream task performance to ambient-space compression at substantially lower cost and with significantly higher rates of compression.

Liked Liked