Beyond Ground: Map-Free LiDAR Relocalization for UAVs

arXiv:2602.13267v1 Announce Type: new
Abstract: Localization is a fundamental capability in unmanned aerial vehicle (UAV) systems. Map-free LiDAR relocalization offers an effective solution for achieving high-precision positioning in environments with weak or unavailable GNSS signals. However, existing LiDAR relocalization methods are primarily tailored to autonomous driving, exhibiting significantly degraded accuracy in UAV scenarios. In this paper, we propose MAILS, a novel map-free LiDAR relocalization framework for UAVs. A Locality-Preserving Sliding Window Attention module is first introduced to extract locally discriminative geometric features from sparse point clouds. To handle substantial yaw rotations and altitude variations encountered during UAV flight, we then design a coordinate-independent feature initialization module and a locally invariant positional encoding mechanism, which together significantly enhance the robustness of feature extraction. Furthermore, existing LiDAR-based relocalization datasets fail to capture real-world UAV flight characteristics, such as irregular trajectories and varying altitudes. To address this gap, we construct a large-scale LiDAR localization dataset for UAVs, which comprises four scenes and various flight trajectories, designed to evaluate UAV relocalization performance under realistic conditions. Extensive experiments demonstrate that our method achieves satisfactory localization precision and consistently outperforms existing techniques by a significant margin. Our code and dataset will be released soon.

Liked Liked