AgentSpawn: Adaptive Multi-Agent Collaboration Through Dynamic Spawning for Long-Horizon Code Generation

arXiv:2602.07072v1 Announce Type: new
Abstract: Long-horizon code generation requires sustained context and adaptive expertise across domains. Current multi-agent systems use static workflows that cannot adapt when runtime analysis reveals unanticipated complexity. We propose AgentSpawn, an architecture enabling dynamic agent collaboration through: (1) automatic memory transfer during spawning, (2) adaptive spawning policies triggered by runtime complexity metrics, and (3) coherence protocols for concurrent modifications. AgentSpawn addresses five critical gaps in existing research around memory continuity, skill inheritance, task resumption, runtime spawning, and concurrent coherence. Experimental validation demonstrates AgentSpawn achieves 34% higher completion rates than static baselines on benchmarks like SWE-bench while reducing memory overhead by 42% through selective slicing.

Liked Liked