A Universal Large Language Model — Drone Command and Control Interface

arXiv:2601.15486v1 Announce Type: new
Abstract: The use of artificial intelligence (AI) for drone control can have a transformative impact on drone capabilities, especially when real world information can be integrated with drone sensing, command, and control, part of a growing field of physical AI. Large language models (LLMs) can be advantageous if trained at scale on general knowledge, but especially and in particular when the training data includes information such as detailed map geography topology of the entire planet, as well as the ability to access real time situational data such as weather. However, challenges remain in the interface between drones and LLMs in general, with each application requiring a tedious, labor intensive effort to connect the LLM trained knowledge to drone command and control. Here, we solve that problem, using an interface strategy that is LLM agnostic and drone agnostic, providing the first universal, versatile, comprehensive and easy to use drone control interface. We do this using the new model context protocol (MCP) standard, an open standard that provides a universal way for AI systems to access external data, tools, and services. We develop and deploy a cloud based Linux machine hosting an MCP server that supports the Mavlink protocol, an ubiquitous drone control language used almost universally by millions of drones including Ardupilot and PX4 framework.We demonstrate flight control of a real unmanned aerial vehicle. In further testing, we demonstrate extensive flight planning and control capability in a simulated drone, integrated with a Google Maps MCP server for up to date, real time navigation information. This demonstrates a universal approach to integration of LLMs with drone command and control, a paradigm that leverages and exploits virtually all of modern AI industry with drone technology in an easy to use interface that translates natural language to drone control.

Liked Liked