A Deep Learning–Driven Method for Bowl Tableware Reconstruction and the Prediction of Liquid Volume and Food Nutrient Content

To overcome the low accuracy of conventional methods for estimating liquid volume and food nutrient content in bowl-type tableware, as well as the tool dependence and time-consuming nature of manual measurements, this study proposes an integrated approach that combines geometric reconstruction with deep learning–based segmentation. After a one-time camera cali-bration, only a frontal and a top-down image of a bowl are required. The pipeline automatically extracts key geometric information, including rim diameter, base diameter, bowl height, and the inner-wall profile, to complete geometric modeling and capacity computation. The estimated parameters are stored in a reusable bowl database, enabling repeated predictions of liquid vol-ume and food nutrient content at different fill heights. We further propose Bowl Thick Net to predict bowl wall thickness with millimeter-level accuracy. In addition, we developed a Geome-try-aware Feature Pyramid Network (GFPN) module and integrated it into an improved Mask R-CNN framework to enable precise segmentation of bowl contours. By integrating the contour mask with the predicted bowl wall thickness, precise geometric parameters for capacity estima-tion can be obtained. Liquid volume is then predicted using the geometric relationship of the liq-uid or food surface, while food nutrient content is estimated by coupling predicted food weight with a nutritional composition database. Experiments demonstrate an arithmetic mean error of −3.03% for bowl capacity estimation, a mean liquid-volume prediction error of 9.24%, and a mean nutrient-content (by weight) prediction error of 11.49% across eight food categories.

Liked Liked